

super() In
Python (s C

superin python

| Overview

The super function in Python is used to access methods of the immediate parent class.

Syntax of super() in Python

The syntax of super in python is given below:

Parameters of super() in Python

The super function in Python takes two optional parameters:
* ClassName: This is the name of the subclass.

* ClassObject: This is an object of the subclass.

Return Values of super() in Python
Return Type: <class 'super'=

The super in Python returns a temporary proxy object of the immediate parentclass thatcan
be used to call methods of the parentclass.

Example of super() in Python

l's understand the super in python using an examp

(self, company,

= Ccompany

model

(company, model, year, ci
= car_type

=

o

afl oo JE
1w mew
my_car = Car("Tesla", "5

print(f"I have a

Output:

I have a Tesla model 5.

Whatis super() Function in Python?

For understanding the super function, one should be familiar with the conceptof classes and
inheritance in Python.

Inheritance is a mechanism by which a class derives (or inherits) attributes and behaviors
from another class without needing to implement them again.

Super Class

Sub Class

Now, getting back to super. When do we use it?

Super Is used when we need to build classes that extend the functionality of previously built
classes. Let's understand this with an example.

Create a class Square

Square has a side attribute and one method for calculating area

Now, we will create a class Cube that inherits Square. With the help of super we can
mplement the surface_area method in Cube without having to re-write the method for

calcu lating area

To summarise, super() returns a temporary object of the superclass that then allows us to call

thatsuperclass’s methods.

Use of super() in Python

The benefits of using a super function are:
* No need to specify the parentclass name.

* Helps in implementing modularity (isolating changes) and code reusability.

More Examples

Example 1: super() with SingleInheritance

Let's understand the use of the super() function in the single inheritance ie IS-A relationship.
Till now, we have understood that the super() function is used to access the members of the
immediate parent's class.

Let's understand how to call the parent's class method using the super() function in the single
Inheritance.

In the below example, the dog class is inheriting the Animal class. This is an example of single-
level inheritance. If we want to access the method of the animal class in the dog class, we can
access them using the super() method.

Let's understand how to use super with single inheritance.

| et's understand how to use super with single inheritance.

namal:
smell({self,name)

print({name, "can smell")

Jog(Animal):

1nit (self)

super().smell({"Dog")

bark(self)

print("Dog can bark")

dog = Deog()
dog.bark()}

Output:

Dog can smell

Dog can bark

The super().smell() is calling the method of the parent's class method.

Example 2: super() with Multiple Inheritance
In multiple inheritance, a particular class can inherit as many classes.
Let's understand multiple inheritance using an example.

In the below example, the Child is inheriting two classes.

Parent:
__1nit_ (self)

print("This is the parent class")

Parentl:
__1nit_ (self)
print("This is the parent1 class")

Child(Parent1, Parent):
__1nit_ (self)

super()._ init_ ()

Output:

Now, how to access the constructor of the Parent class using the super() function? First of all,

we have to understand the concept of the MRO.

MRO

MRO stands for Method Resolution Order. MRO defines the order of the inherited methods in
the child class. Let's understand using the above example, In the above example we are
accessing the constructor using the super() function, the super() will search the constructor

according to the order of the inherited class, it will search first in the Parentl class than in the
Parent class.

In the above case, the constructor is already present in the Parentl class that's why the
constructor of the Parentl class Is executed instead of the Parent class, and also the super()
function in python is used to access the immediate parent's class members.

Let's understand this using an example.

Let's understand the order of inheriting class by the Child class.

Parent:
__1nit_ (self)
print("This is the parent class")

Parentl:
__1nit_ (self)
print("This is the parentl class")

Child{Parent1, Parent):

__1nit_ (self)

e |
o T Jd J P I
L) = T e =

super().__ 1

print(Child.mro())

Output:

' _main__.Child'>, <class '__main__.P

We can see clearly in the output, the Child class first extends the Parentl class then extend the
Parent class. The object class is the super class of all the classes in the python language that's
why at last the Child class also extends the object class by default.

MNow how to access the method of the Parent class using the super function? Let's understand
the syntax of the super() function to access the Parent class methods using the super()

function.

Syntax:

Super (Immediateclassname, currentobject)

This super() function accepts two parameters in the multiple inheritance.

* ImmediateClassName: The name of the class that is just inherited before the class that we
want to access using the super() function.

» currentObject: The current object of the class.

Let's understand how to access the constructor of the Parent class from the Child class

Parent:
__1nit_ (self)
print("This is the parent class")

Parentl:
__1nit_ (self)
print("This is the parentl class")

Child{Parent1, Parent):
__1nit_ (self)

wer il 1]

T ¥ T
S ol S e "'I'_ LAV L L LA

super(Parent1, sel

-~ = N AFY
Ly = l:l-l__-\.-l___l

Output:

the parent

r() function in the Child class.

Conclusion

* The super function in Python is used to access methods of the immediate parent class.
* The Return type of the Super function is a proxy object of the Immediate class.
* The super() function use the concept of MRO in the multiple inheritance.

* The super() function also takes two parameters i.e the immediate parent class name and
the current object.

