

Python Set

A Python set is the collection of the unordered items.
Each element in the set must be unique, immutable, and
the sets remove the duplicate elements. Sets are
mutable which means we can modify it after its

creation.

Unlike other collections in Python, there is no index
attached to the elements of the set, i.e., we cannot
directly access any element of the set by the index.
However, we can print them all together, or we can get

the list of elements by looping through the set.

Creating a set

The set can be created by enclosing the comma-
separated immutable items with the curly braces {}.

Python also provides the set() method, which can be

used to create the set by the passed sequence.

Example 1: Using curly braces

Days = {"Monday", "Tuesday", "Wednesday”, "Thursday", "Fi
print(Days)

print(type(Days))

print("looping through the set elements ... ")

foriin Days:

print(i)

{'Friday’', ‘Tuesday', ‘Monday’, “Saturday’. 'Thursday'

«rlAss “sAr’'»

looping through the set elements ...
Friday

Tuesday

Monday

Saturday

Thursday

Sunday

Wednesday

'Sunday” ,

"Wednesday '

It can contain any type of element such as integer, float,
tuple etc. But mutable elements (list, dictionary, set)
cant be a member of set. Consider the following

example.

Creating a set which have immutable elements
setl ={1,2,3, "JavaTpoint’, 20.5, 14}
print(type(set1))

#Creating a set which have mutable element
set2 ={1,2,3,['Javatpoint” 4]}

print(type(set2))

Traceback (most recent call last)

<ipython-input-5-9605bb6fbc68> in <module>

4
5 #Creating a set which holds mutable elements
6 seftl = {1,2,3,[”Javatpuint“,d]}

7 print(type(set2))

TypeError: unhashable type: 'list’

In the above code, we have created two sets, the set
setl have immutable elements and set?2 have one
mutable element as a list. While checking the type of
set?, it raised an error, which means set can contain

only immutable elements.

Creating an empty set is a bit different because empty
curly {} braces are also used to create a dictionary as
well. So Python provides the set() method used without

an argument 1o create an empty set.

Empty curly braces will create dictionary
set3 = {}
print(type(set3))

Empty set using set() functicn
set4 = set()
print(type(set4))

Output:

<class 'dict'>

<class 'set'>

Let's see what happened if we provide the duplicate

element to the set.

set5={1,2,4,4,5,89,9,10}

print("Return set with unique elements:",setd)

Cutpul:

Return set with unique elements: {1, 2,

Adding items to the set

Python provides the add() method and update()

method which can be used to add some particular item

to the set. The add() method is used to add a single
element whereas the update() method is used to add
multiple elements to the set. Consider the following

example.

Example: 1 -Using add() method

Months = set([" January® "February®, "March®, "April", "May"
print("\nprinting the original set ... ")

print{months)

print("\nAdding other months tothe set..");

Maonths. add(" July");

Months.add ("&ugust”);

print("\nPrinting the modified set._");

print(M onths)

print("\nlooping through the set elements .. ")

for i in Months:

prrinti)

Output :

printing the original set ...
{'February', "May', "April', 'March', "June', "'January"'.

Adding other mcnths to the set...

Frinting the modified set...
{'February', 'July', 'May"', 'April’', 'March', ‘August’', "June', 'January'}

looping through the set elements ...
February

July

May

April

March

August

June

January

To add more than one item in the set, Python provides
the update() method. It accepts iterable as an
argument.

Consider the following example

Example - 2 Using update() function

Months = set(["January”"February”, "March”, "April”, "May™, "
print{"wnprinting the onginal set ... ")

print{Months)

print{"vnupdating the original set ... 7)

Months update(["July' 'August’ September’ "October']);
primt{"wnprinting the modified set ... ")

print{Months);

Output:

printing the original set ...
{'January', *February®, ‘April', "May’, "Jume', ‘March’}

updating the original set ...
printing the modified set ...

{"Januwary', "Fehruary®, 'April', "Auwgust', 'October', "May®, "Jure', 'July", 'September', "March'}

Removing items from the set

Python provides the discard() method and remove()
method which can be used to remove the items from
the set. The difference between these function, using
discard() function if the item does not exist in the set
then the set remain unchanged whereas remove()

method will through an error.

Example-1 Using discard() method

months = set(["January""February"’, "March", "April”, "May", "
print{"\nprinting the original set ... ")

print{months)

print{"\nRemoving some months from the set..");
months.discard("January");

months.discard("May"),

print{"\nPrinting the modified set_..");

print{months)

print("\nlcoping through the set elements ... ")

for | in months:

print(i)

printing the original set ...
{'February', 'January', 'March', "April®, "June', 'May'}

Removing some months from the set...

Printing the modified set...
{'February', 'March', "April’', 'June'}

looping through the set elements ...

February
March

April

June

Python provides also the remove() method to remove
the item from the set. Consider the following example

to remove the items using remove() method.

Example-2 Using remove() function

months = set(["January”,'February", "March', "April", "May", "
print("\nprinting the original set ... ")

print(months)

print("\nRemoving some months from the set...");
months.remove('January");

months.remove(May");

print("\nPrinting the modified set...");

print(months)

Output:

printing the original set .

{'February', "June', "April', 'May', 'January', 'March'}

Removing some months from the set...

Printing the modified set...

{'February', 'June', "April', 'March'}

We can also use the pop() method to remove the item.

Generally, the pop() method will always remove the last
item but the set is unordered, we can't determine which

element will be popped from set.

Consider the following example to remove the item

from the set using pop() method.

Months = set{["January"'February”, "March”®, "April”, "May", "
print{"\nprinting the original set ... ")

print{Months)

print{"\nRemoving some months from the set..");
Months.pop();

Months.pop();

print{"\nPrinting the modified set_..");

print{Months)

printing the original set ...
{"June’, 'January', "May', "April’', 'February', 'March'}

1
f

Removing some months from the set...

Printing the modified set...

{"May"', "April', 'February', 'March'}

In the above code, the last element of the Month set is
March but the pop() method removed the June and
January because the set is unordered and the pop()

method could not determine the last element of the set.

Python provides the clear() method to remove all the

items from the set.

Consider the following example.

Months = set(["January",'February”, "March”, "April", "May", "
print("\nprinting the original set ... ")

print(Months)

print("\nRemoving all the items from the set...");
Months.clear()

print("\nPrinting the modified set...")

print(Months)

Outpurt:

printing the original set ...
{"January', 'May', "June', 'April', "March’', 'February'}

Removing all the items from the set...

Printing the modified set...
set()

Difference between discard() and
remove()

Despite the fact that discard() and remove() method
both perform the same task, There is one main

difference between discard() and remove().

If the key to be deleted from the set using discard()
doesn't exist in the set, the Python will not give the error.

The program maintains its control flow.

On the other hand, if the item to be deleted from the set

using remove() doesn't exist in the set, the Python will

raise an error.

Example-

Months = set(["January”,'February”, "March", "April", "May", "June"])

print("\nprinting the original set ... ")

print(Months)

print(“\nRemoving items through discard() method...”);

Months.discard("Feb"); #will not give an error although the key feb is not available in the set
print(“\nprinting the modified set...”)

print(Months)

print("\nRemoving items through remove() method...”);

Months.remove("Jan") #will give an error as the key jan is not available in the set.
print("\nPrinting the modified set..”)

print(Months)

Qutput:

printing the original set
{'March', 'January', 'April', "June', 'February', 'May'}

Removing 1items through discard() method...

printing the modified set...
{'March', "January', "April', 'June', 'February', 'May'}

Removing items through remove() method...
Traceback (most recent call last):
File "set.py", line 9, 1n
Months.remove("Jan")
KeyError: 'Jan'

