

Python Set Operations

Set can be performed mathematical operation such as
union, intersection, difference, and symmetric
difference. Python provides the facility to carry out

these operations with operators or methods. We

describe these operations as follows.

Union of two Sets

The union of two sets is calculated by using the pipe (|)

operator. The union of the two sets contains all the

items that are present in both the sets.

Consider the following example to calculate the union of two sets.

Example 1: using union | operator

Days1 = {"Monday",'Tuesday",'Wednesday""Thursday", "Sun
Days2 = {"Friday"'Saturday","Sunday"}
print(Days1|Days2) #printing the union of the sets

Output:

{"Friday', 'Sunday', 'Saturday’', ‘Tuesday', 'Wednesday', 'Monday', 'Thursday'}

Python also provides the union() method which can
also be used to calculate the union of two sets.

Consider the following example.

Example 2: using union() method

Days1 = {"Monday’, Tuesday’,'Wednesday",'Thursday"}

Days2 = {"Friday","Saturday","Sunday"}
print(Days1.union(Days2)) #printing the union of the sets

Outpurt:

("Friday', 'Sunday', 'Saturday', "Tuesday', 'Wednesday', 'Monday', 'Thursday'}

Intersection of two sets

The intersection of two sets can be performed by the
and & operator or the intersection() function. The
intersection of the two sets is given as the set of the

elements that common in both sets.

Consider the following example.

Example 1: Using & operator

Days1 = {"Monday",'Tuesday", "Wednesday", "Thursday"}

Days2 = {"Monday",'Tuesday","Sunday", "Friday"}
print(Days1&Days2) #prints the intersection of the two set:

Output:

{'Monday', 'Tuesday'}

Example 2: Using intersection() method

set1 = {"Devansh""John", "David", "Martin"}
set? = {"Steve”, "Milan", "David", "Martin"}

print(setl.intersection(set2)) #prints the intersection of the

Output:

{"Martin', 'David'}

Example 3:

set1 ={1,2,3,4,5,6,7}
set2 ={1,2,20,32,5,9}
set3 = setl.intersection(set2)

print(set3)

Output:

The intersection_update() method

The intersection_update() method removes the items
from the original set that are not present in both the

sets (all the sets if more than one are specified).

The intersection_update() method is different from the
intersection() method since it modifies the original set
by removing the unwanted items, on the other hand, the

intersection() method returns a new set.

Consider the following example

a = {"Devansh" "bob", "castle"}
b = {"castle”, "dude’, "emyway"}
¢ = {"fuson"”, "gaurav”, "castle'}

a.intersection_update(b, c)

print{a)

Output:

Difference between the two sets

The difference of two sets can be calculated by using
the subtraction (-) operator or intersection() method.
Suppose there are two sets A and B, and the difference
Is A-B that denotes the resulting set will be obtained

that element of A, which is not present in the set B.

»

Consider the following example.

Example 1 : Using subtraction (-) operator

Days1 = {"Monday", "Tuesday", "Wednesday", "Thursday"}
Days2 = {"Monday", "Tuesday", "Sunday"}

print(Days1-Days2) 3
{"Wednesday", "Thursday" will be printed}

Qutput:

{'Thursday', 'Wednesday'}

Example 2 : Using difference() method

Days1 = {"Monday", "Tuesday", "Wednesday", "Thursday"}
Days2 = {"Monday", "Tuesday", "Sunday"}
print(Days1.difference(Days2)) # prints the difference of th

Output:

{'Thursday', 'Wednesday'}

Symmetric Difference of two sets

The symmetric difference of two sets is calculated by *
operator or symmetric_difference() method. Symmetric
difference of sets, it removes that element which is

present in both sets. Consider the following example:

Example - 1: Using * operator

a=1{1,234,5,6}
b ={1,2,9,8,10}
c=a"b

print(c)

Output:

13, 4, 5, 6, 8, 9, 10}

Example - 2: Using symmetric_difference() method

a={1,234,5,6}
b ={1,2,9,8,10}
¢ = a.symmetric_difference(b)

print(c)

Output:

13, 4, 5, 6, 8, 9, 10}

Set comparisons

Python allows us to use the comparison operators i.e.,
<, > <=, >= | == With the sets by using which we can
check whether a set is a subset, superset, or equivalent
to other set. The boolean true or false is returned

depending upon the items present inside the sets.

Consider the following example.

Days1 = {"Monday”, "Tuesday", "Wednesday", "Thursday"}
Days2 = {"Monday", "Tuesday"}
Days3 = {"Monday", "Tuesday", "Friday"}

#Days1 is the superset of Days2 hence it will print true.

print (Days1=Days2)

#prints false since Days1 is not the subset of Days?2

print (Days1<Days2)

#prints false since Days2 and Days3 are not equivalent

print (Days2 == Days3)

Qutput:

FrozenSets

The frozen sets are the immutable form of the normal
sets, i.e., the items of the frozen set cannot be changed

and therefore it can be used as a key in the dictionary.

The elements of the frozen set cannot be changed after
the creation. We cannot change or append the content

of the frozen sets by using the methods like add() or

remove().

The frozenset() method is used to create the frozenset
object. The iterable sequence is passed into this
method which is converted into the frozen set as a

return type of the method.

Consider the following example to create the frozen set.

Frozenset = frozenset([1,2,3,4,5])
print(type(Frozenset))
print("\nprinting the content of frozen set...")
foriin Frozenset:
print(i);
Frozenset.add(6) #gives an error since we cannot change the content of Frozens

"frozenset'=>

printing the content of frozen set...
1

Iraceback (most recent call last):
File "set.py", line &, in <module=>

Frozenset.add(6} #gives an error since we can change the content of Frozenset after creation

AttributeError: 'frozenset' object has no attribute 'add'

Python Built-in set methods

Python contains the following methods to be used with the s

SN Method Description

1 add(item) It adds an item
to the set. It
has no effect if
the item s
already
present in the

sel.

2 clear() It deletes all
the items from
the set.

3 copy() It returns a

shallow copy

of the set,
4 difference_update(....) It modifies this
set by

removing all

the items that
are also

present in the

specified sets.

5 discard(item) It removes the

specified item

from the set.

10

intersection()

intersection_updatel....)

Isdisjoint(....)

Issubset(...)

Issuperset(....)

It returns a
new set that
contains only
the common
elements of
both the sets.
(all the sets if
more than two

are specified).

It removes the
items from the
original set
that are not
present in both
the sets (all
the sets if
more than one

are specified).

Return True if
two sets have

a null

intersection.

Report
whether
another set
contains this

set.

Report
whether this
set contains

another set.

11

12

13

pop()

remove(item)

symmetric_difference(....)

Remove and

return an

arbitrary set
element that is
the last
element of the
set. Raises
KeyError if the

set is empty.

Remove an
element from a
set: it must be
a member. |If
the element is

not a member,

raise a
KeyErmror.
REemove an

element from a
set; it must be

a member. |If

the element is

not a member,

raise 3

KeyError.

14

15

16

symmetric_difference_update(....) Update a set

union(....)

update()

with the
symmetric

difference of
itself and

another.

Return the
union of sets
as a new set.
(i.e. all
elements that
are In either
set.)

Update a set
with the union
of itself and
others.

