Python

OOPS CONCEPTS
o

Python OOPs
Concepts

What is Object-Oriented Programming? (OOPs concepts in
Python)

Object Oriented Programming is a way of computer

programming using the Iidea of “objects” to

represents data and methods. It is also, an
approach used for creating neat and reusable code
instead of a redundant one. the program is divided into self-
contained objects or several mini-programs. Every Individual
object represents a different part of the application having its own

logic and data to communicate within themselves.

Now, to get a more clear picture of why we use oops instead of

pop, | have listed down the differences below.

Difference between Object-Oriented and Procedural
Oriented Programming

Object-Oriented Programming (OOP) Procedural-Oriented Programming (Pop)

It is a bottom-up approach It is a top-down approach
Program is divided into objects Program is divided into functions

Makes use of Access modifiers
Doesn't use Access modifiers

‘public’, private’, protected’
It is more secure It is less secure

Object can move freely within member Data can move freely from function to function

functions within programs

It supports inheritance It does not support inheritance

That was all about the differences, moving ahead let's get an idea
of Python OOPs Conceots.

What are Python OOPs Concepts?

Major OOP (object-oriented programming) concepts in Python
include Class, Object, Method, Inheritance, Polymorphism, Data
Abstraction, and Encapsulation.

That was all about the differences, moving ahead let's get an idea
of classes and objects.

What are Classes and Objects?

A class is a collection of objects or you can say it is a blueprint of

objects defining the common attributes and behavior. Now the
question arises, how do you do that?

Well, it logically groups the data in such a way that code
reusability becomes easy. | can give you a real-life example- think
of an office going 'employee’ as a class and all the attributes
related to it like ‘'emp_name’, 'emp_age’, 'emp_salary’, ‘'emp_id" as
the objects in Python. Let us see from the coding perspective that
how do you instantiate a class and an object.

Class is defined under a "Class” Keyword.

Example:

| class classi1(): // class 1 is the name of the class
Note: Python is not case-sensitive.

Objects:

Objects are an instance of a class. It is an entity that has state and
behavior. In a nutshell, it is an instance of a class that can access
the data.

Syntax: obj = class()

Here obj is the “"object ” of class1.

Creating an Object and Class in python:

Example:

class employee():

def __init_ (self,name,age,id,salary): ffcreating a functior
self.name = name // self is an instance of a class
self.age = age
self.salary = salary
self.id = 1id

emp1l = employee("harshit",22,1000,1234) //creating objects
emp2 = employee("arjun",23,2000,2234)
print(empl._ dict__)//Prints dictionary

& TAB

{'name’': 'harshit', ‘'age': 22, ‘'salary’': 1234, 'id': 1000}

[Program finished]

Explanation: 'emp1’and ‘'emp2’ are the objects that are
instantiated against the class ‘'employee’.Here, the word (__dict_)
Is a "“dictionary” which prints all the values of object ‘'emp1’ against
the given parameter (name, age, salary).(__init__) acts like a
constructor that is invoked whenever an object is created.

| hope now you guys won't face any problem while dealing with
‘classes’ and ‘objects’ in the future.

With this, let me take you through a ride of Object Oriented
Programming methodologies:

Object-Oriented Programming methodologies:
Object-Oriented Programming methodologies deal with the

following concepts.

e Inheritance
e Polymorphism
e Encapsulation
e Abstraction

edureka!
Inheritance in Python

i L]
L] |] L]

. 00
o

Inheritance:

Ever heard of this dialogue from relatives “you look exactly like
your father/mother” the reason behind this is called ‘inheritance’.
From the Programming aspect, It generally means “inheriting or
transfer of characteristics from parent to child class without any
modification”. The new class is called the derived/child class and

the one from which it is derived is called a parent/base class.

edureka!

Types Of Inheritance

r

Single Inheritance Multilevel Inheritance Hierarchical Inheritance Multiple Inheritance

Single Inheritance:

Single level inheritance enables a derived class to inherit
characteristics from a single parent class.

Example:

class employeel()://This is a parent class
def __init_ (self, name, age, salary):
self.name = name

self.age = age

self.salary = salary

class childemployee(employeel1)://This is a child class
def _ init_ (self, name, age, salary,id):

self.name = name

self.age = age

self.salary = salary

self.id = id

empl = employeel('harshit',22,1000)

print(empl.age)

Output: 22

Explanation:

e | am taking the parent class and created a constructor
(init), class itself is initializing the attributes with

parameters(‘'name’, ‘age’ and 'salary’).

e Created a child class ‘childemployee’ which is inheriting the
properties from a parent class and finally instantiated objects
‘emp1”and 'emp2’ against the parameters.

e Finally, | have printed the age of emp1. Well, you can do a hell
lot of things like print the whole dictionary or name or salary.

Multilevel Inheritance:

Multi-level inheritance enables a derived class to inherit

properties from an immediate parent class which in turn inherits

properties from his parent class.

Example:

class employee()://Super class

def __init_ (self,name,age,salary):

self.name = name

self.age = age

self.salary = salary

class childemployeeil({employee)://First child class
def __init_ (self,name,age,salary):

self.name = name

self.age = age

self.salary = salary

class childemployee2{childemployee1)://Second child class
def _ init_ (self, name, age, salary):

self.name = name

self.age = age

self.salary = salary

empl = employee('harshit',22,1000)

emp2 = childemployeel('arjun',23,2000)

print{empl.age)
print(emp2.age)

Output: 22,23

Explanation:

e |t is clearly explained in the code written above, Here | have

defined the superclass as employee and child class as

childemployeel1. Now, childemployeel acts as a parent for

childemployee2.

* | have instantiated two objects ‘emp1’ and 'emp2’ where | am
passing the parameters “name”, “age”, “salary” for emp1 from
superclass “employee” and “name”, “"age, “salary” and "“id"

from the parent class “childemployee1”

Hierarchical Inheritance:

Hierarchical level inheritance enables more than one derived

class to inherit properties from a parent class.

Example:

class employee():

def _ _init_ (self, name, age, salary): //Hierarchical Inherit:
self.name = name

self.age = age

self.salary = salary

class childemployeei({employee):

def __init_ (self,name,age,salary):
self.name = name

self.age = age

self.salary = salary

class childemployee2(employee):

def __init_ (self, name, age, salary):
self.name = name

self.age = age

self.salary = salary

empl = employee('harshit',22,1000)
emp2 = employee('arjun',b23,2000)

print{empl.age)
print{emp2.age)

Output: 22,23

Explanation:

* In the above example, you can clearly see there are two child
class “childemployee1” and “childemployee2”. They are

inheriting functionalities from a common parent class that is
“employee”.

e Objects 'emp1” and 'emp2’ are instantiated against the

parameters ‘name’, ‘age’, ‘salary’.

Multiple Inheritance:
Multiple level inheritance enables one derived class to inherit

properties from more than one base class.

Example:

| | class employeel()://Parent class

2 def _ init_ (self, name, age, salary):
. self.name = name

4 self.age = age

self.salary = salary

7| class employee2()://Parent class
def __init_ (self,name,age,salary,id):
9 self.name = name
0 self.age = age
self.salary = salary
2 self.id = id

4| class childemployee(employeel,employee2):
def __init_ (self, name, age, salary,id):
self.name = name
self.age = age
. self.salary = salary
9 self.id = id
201 empl = employeel('harshit',22,1000)
21| emp2 = employee2('arjun',23,2000,1234)

22| print(empl.age)
24 | print{emp2.id)

Output: 22,1234

Explanation: In the above example, | have taken two parent class
“employee1” and "employee2”.And a child class “childemployee”,
which is inheriting both parent class by instantiating the objects

‘'emp1’and ‘'emp2’ against the parameters of parent classes.

This was all about inheritance, moving ahead in Object-Oriented

Programming Python, let's take a deep dive in ‘polymorphism’.

edureka!
Polymorphism
In Python

Polymorphism:

You all must have used GPS for navigating the route, Isn't it
amazing how many different routes you come across for the
same destination depending on the traffic, from a programming
point of view this is called ‘polymorphism’. It is one such OOP
methodology where one task can be performed in several
different ways. To put it in simple words, it is a property of an

object which allows it to take multiple forms.

Operating System

Polymorphism is of two types:

Compile-time Polymorphism:

A compile-time polymorphism also called as static polymorphism
which gets resolved during the compilation time of the program.
One common example is “method overloading”. Let me show you

a quick example of the same.

Example:

class employeel():

def name(self):
print("Harshit is his name")
def salary(self):
print("3000 1s his salary")

def age(self):
print("22 1s his age")

class employee2():
def name(self):
print("Rahul is his name")

def salary(self):
print("4000 1s his salary")

def age(self):
print("23 is his age")

def func{obj)://Method Overloading
obj.name()
obj.salary()

obj.age()

obj_emp1l = employeel()
obj_emp2 = employee2()

func(obj_emp1)
func(obj_emp2)

Output:

Harshit is his name
3000 is his salary
22 is his age

Rahul is his name
4000 is his salary
23 is his age

Explanation:

¥

* |In the above Program, | have created two classes ‘employee
and 'employee2’ and created functions for both ‘name’, ‘'salary’
and ‘age’ and printed the value of the same without taking it

from the user.

e Now, welcome to the main part where | have created a
function with ‘obj" as the parameter and calling all the three

functions i.e. ‘name’, ‘age’ and ‘salary’.

e Later, instantiated objects emp_1 and emp_2 against the two
classes and simply called the function. Such type is called
method overloading which allows a class to have more than
one method under the same name.

Run-time Polymorphism:

A run-time Polymorphism is also, called as dynamic
polymorphism where it gets resolved into the run time. One
common example of Run-time polymorphism is “method
overriding”. Let me show you through an example for a better
understanding.

Example:

class employee():
def __init_ (self,name,age,id,salary):

self.name = name
cself.age = age
self.salary = salary
self.id = id

def earn(self):
pass

class childemployeel(employee):

def earn(self)://Run-time polymorphism
print("no money")

class childemployee2(employee):

def earn(self):
print("has money")

c = childemployee
c.earn{employee)
d = childemployee2
d.earn(employee)

Output: no money, has money

Explanation: In the above example, | have created two classes
‘childemployeel’ and ‘childemployee2’ which are derived from the
same base class ‘employee’.Here's the catch one did not receive
money whereas the other one gets. Now the real question is how
did this happen? Well, here if you look closely | created an empty
function and used Pass (a statement which is used when you do
not want to execute any command or code). Now, Under the two
derived classes, | used the same empty function and made use of
the print statement as 'no money' and ‘has money'.Lastly, created
two objects and called the function.

Moving on to the next Object-Oriented Programming Python
methodology, I'll talk about encapsulation.

educha.com

)"

. Encapsulation in
Python

=
|:|':I
=
4:.‘-'.".1
&
-
e

OO0 0O _"00 0o

0
?.mgg?;o
o Voo :ﬂuﬂ:@

-
&

Encapsulation:

In a raw form, encapsulation basically means binding up of data in
a single class. Python does not have any private keyword, unlike
Java. A class shouldn't be directly accessed but be prefixed in an
underscore.

Let me show you an example for a better understanding.

Example:

| | class employee(ohject):
21 def __init_ (self):

3 self.name = 1234

4 self._age = 1234

5 self.__salary = 1234

71 objectl = employee()
21 print(objectl.name)
9| print(objecti1._age)
0| print(object1.__salary)

Output:

1234

Traceback (most recent call last):

1234

File
“C:/Users/Harshit_Kant/PycharmProjects/test1/venv/encapsu.py”,
line 10, in

print(object1.__salary)

AttributeError: 'employee’ object has no attribute *__salary’

Explanation: You will get this question what is the underscore
and error? Well, python class treats the private variables

as(__salary) which can not be accessed directly.

5o, | have made use of the setter method which provides indirect

access to them in my next example.

Example:

class employee():
def _ init_ (self):
self. maxearn = 1000000

def earn(self):
print("earning 1is:{}".format(self.__maxearn))

def setmaxearn(self,earn)://setter method used for accesing privaf
self. maxearn = earn

empl = employee()
empl.earn()

emp1.__maxearn = 10000
empl.earn()

emp1.setmaxearn(10000}
empl.earn()

Output:

earning is:1000000,earning is:1000000,earning is:10000

Explanation: Making Use of the setter method provides indirect
access to the private class method. Here | have defined a class
employee and used a (__maxearn) which is the setter method
used here to store the maximum earning of the employee, and a
setter function setmaxearn() which is taking price as the

paramerter.

This is a clear example of encapsulation where we are restricting
the access to private class method and then use the setter
method to grant access.

Next up in object-oriented programming python methodology
talks about one of the key concepts called abstraction.

python

=

Abstraction
in Python

Abstraction:

Suppose you booked a movie ticket from

il
.

:::I-:]ﬁ':::u
UMLIKE
BOOKING i
L
I ————

verification is done. This Iis called ‘abstraction’” from the
programming aspect, it basically means you only show the

pookmyshow using net banking or any other
process. You don't know the procedure of

now the pin is generated or how the

iImplementation details of a particular process and hide the
details from the user. It is used to simplify complex problems by
modeling classes appropriate to the problem.

An abstract class cannot be instantiated which simply means you
cannot create objects for this type of class. It can only be used for
inheriting the functionalities.

Example:

I from abc import ABC,abstractmethod

2 | class employee(ABC):

2| def emp_id(self,id,name,age,salary): ffAbstraction
4| pass

class childemployeel(employee):
def emp_id(self,id):
print("emp_1id 1s 12345")

empl = childemployeel()

7 |
fl
g I

| empl.emp_1id(id)

Output: emp_id is 12345

Explanation: As you can see in the above example, we have
imported an abstract method and the rest of the program has a
parent and a derived class. An object is instantiated for the
‘childemployee’ base class and functionality of abstract is being
used.

Is Python 100 percent object oriented?

Python doesn't have access specifiers like “private” as in java. It
supports most of the terms associated with “objected-oriented”
programming language except strong encapsulation. Hence it is
not fully object oriented.

