

The print()

function in

python

How print() Function works
in Python?

The Python print() function by
default displays to the standard
console. print() without any
arguments displays the new line to
the console hence when you print a

string, it displays a string and also
adds a new line to the console.

1. Syntax of print()
Following 1s the syntax of the print()

statement.

Syntax of print()

print(*objects, sep=' ', end="\n, file=sys.stdout, flush=False)

Python

Function Parameters

 Objects - file
- sep flush
J end

1.1 Parameters of print()

objects — The object you wanted to print. It displays the content of the
object to standard output. You can use this to print multiple objects by
using a comma separator.

sep — Used to specify how to separate the object.

end — Used the character to used at the end of the printed object. Default
sets to \n (newline)

file — Specify the file object where you wanted to print the object. Default
is standard console which is sys.stdout.

flush — Specify whether to buffer the output or flush to console.

2. Python print() Function Example

First, let’s see the default behavior of the Python print() function that just
takes the text.

By default when you display text in Python by using the print() function,
each text issued with a print function writes in a new line. Here, is an
example,

= Print() Usage
print{“Welcoms to")

print{"Python Tutorial’

This code yields the following output on the console.

runfilel(‘/Users/admin/print-example.py’, wdir="'/Users/admin")
Welcome to
Python Tutorial

3. Print Multiple Texts

The print() function can also be used to print multiple statements, all you

need to do is pass all the objects you wanted to print as an argument to the
function.

Print multiple strings

str1 = "Welcome to"

str2 = "Python Tutorial"

print{stri1,strd)

This code yields the following output on the console.

Output:

Welcome to Python Tutorial

4. Print using sep Parameter

The sep parameter is used to separate the objects on the console by the
specified separator

Print multiple strings
strl = “wWelcome to"
strl = "Python Tutorial®

print{stri,.strd, sep=".,"%)

This code yields the following output on the console.

Outpurt:

Welcome to,Python Tutorial

5. Print using end Param

As you saw above the print() function by default prints objects in a new
line. To print without a newline you can use the end param. By using this
you can specify what delimiter you wanted to use when printing on a
single line.

Printing text without newline
print{"welcome to™, end =" ")

print({"Python Tutorial®})

This code yields the following output on the console.

Output:

Welcome to Python Tutorial

6. print() Function with file Parameter

By default print() function prints the object to the Python standard console

which is sys.stdout. You can change this to print it to the file by using the
file parameter.

Using file param

logSourceFile = open('logfile.txt', "w')

print{"welcome to Python Tutorial", file = logSourceFile)

logSourceFile.close()

Here, the open() method is used to open the logfile. txt file and w param
specified to open file in write mode. If a file doesn’t exists it create a new
file and opens in write mode.

We also used the file param with the value logSourcefFile to the print()
function. hence, it writes the text to the logfile.txt.

After completing on writing, may sure you close the file object by using
close() method.

7. Print() with flush Parameter

By default the value to the flush param is set to False meaning it waits for
the line to complete before printing on console,

[f you set fluash param to True, it flushes the text to console as it receives.
When using this on small text you may not be much difference.

Note that the lush param doesn’t affect the output instead it just defines
how fast the date should be printed on the console.

Using Tlush param
fruits={'apple',h 'mango’, 'guava’,}
for x in fruits:

print{x, end=" ", flush=True)

