

Python Lists

Python Lists are just like dynamically sized arrays,
declared in other languages (vector in C++ and
ArrayList in Java). In simple language, a list is a
collection of things, enclosed in [] and separated by

commas.

The list is a sequence data type which is used to

store the collection of data. Tuples and String are

other types of sequence data types.

Var = ["Geeks", "for", "Geeks"|]

print(Var)

Output:

["Geeks", "for", "Geeks"]

Creating a List in Python

Lists in Python can be created by just placing the
sequence inside the square brackets[]. Unlike Sets, a
list doesn’t need a built-in function for its creation of a

list.

Note: Unlike Sets, the list may contain mutable

elements.

Python program to demonstrate
Creation of List

Creating a List
List = []
print("Blank List: ")
print(List]

Creating a List of numbers
List = [10, 20, 14]
print("\nList of numbers: ")

print{List)

Creating a List of strings and accessing
using index

List = ["Geeks", "For", "Geeks"]
print({"%nList Items: ")
print(List[0]]

print(List[2])

Output

Blank List:

[]

List of numbers:

(10, 20, 14]

List Items:
Geeks

Geeks

Example 1: Accessing elements from list

Python program to demonstrate
accesaing of element from list

T e

Creating a List with
the use of multiple walues

List = ["Geeks", "For", "Geeks"]

accessing a element from the
list using index number

print{"Accessing a element from the list")
print{List[0])

print (List[2]]

Output

Accessing a element from the list
Geeks

Geeks

Example 2: Accessing elements from a multi-dimensional list

Creating a Multi-Dimensional List

(By Nesting a list inside a List)

List = [['Geeks', 'For'], ['Geeks']]
accessing an element from the

Multi-Dimensional List using
index number

print("Accessing a element from a Multi-Dimensional list")
print(List[0][1])
print{List[1][0]]

Output

Accessing a element from a Multi-Dimensional list
For

Geelks

Negative indexing

In Python, negative seguence indexes represent positions from the end of the array. Instead of having to compute
the offset as in List[len{List)-3], it is enough to just write List[-3]. Megative indexing means beginning from the end,
-1 referstothe last tem, -2 refers tothe second-last item, etc.

Python3

List = [1, 2. 'Geeks', 4, 'For', 6. 'Geeks"']

accessing an element using
nepative indexing

print("Accessinfg element using negative indexing” |

print the last element of list

print (List[-1])

print the third last element of list

print (List[-31])

Output

Accessing element using negative indexing
Geeks

For

Taking Input of a Python List

We can take the input of alist of elements as string, integer, float, eic. But the defauli one is a string.

Example 1:

Python3

FPython preogram to take space
separated input as a string
split and store it to a list
and print the string list

input the list as string

string = input("Enter elements (Space-Zeparated): "}

split the strings and store it to a list
lst = string.splitl]

print{ 'The list is:", 1lst]} # printing the list

QOutput:

Enter elements: GEEKS FOR GEEKS
The list is: ["GEEKS", 'FOR', "GEEKS"]

Adding Elements to a Python List

Method 1: Using append() method

Elements can be added to the List by using the built-in
append() function. Only one element at a time can be
added to the list by using the append() method, for the
addition of multiple elements with the append()
method, loops are used. Tuples can also be added to
the list with the use of the append method because
tuples are immutable. Unlike Sets, Lists can also be
added to the existing list with the use of the append()

method.

Python program to demonstra
Addition of elements in a L

Creating a List
List = []
print{"Initial blank List: ")

print(List)

Addition of Elements
in the List

List.appendl(1)
List.appendl 2)
List.appendli4)

print(" nlist after Addition of Three elements:

print{List)

Adding elements to the List
using Iterator

for i in ranpgell, 41):
List.appendii)
print{"ynlist after Addition

print{List)

Adding Tuples to the List
List.append({5, &6))

print{ "% nlist after Addition

print{List)

Additicon of List te a List
[" For', '"Geeks']

List?2
List.append(List2)
print{"%nlist after Addition

print{List)

te
ist

of elements from 1-3:

of a Tuple:

of a List:

")

"l

"

Output

Initial blank List:

[]

List after Addition of Three elements:

[1, 2, 4]

List after Addition of elements from 1-3:

1. 2, 4, 1, 2, 3]

List after Addition of a Tuple:

1, 2, 4, 1, 2, 3, (3, 6)]

List after Addition of a List:

[1, 2, 4, 1, 2, 3, (5, 6), ['"For", 'Geeks']]

Method 2: Using insert() method

append() method only works for the addition of

elements at the end of the List, for the addition of

elements at the desired position, insert() method is

used. Unlike append() which takes only one argument,
the insert() method requires two arguments(position,

value).

Python program to demonstrate
Addition of elements in a List

Creating a List
List = [1,2,3,4]
print("Initial List: ")

print(List]

Addition of Element at
specific Positioen
{(using Insert Method)

List.insert(3, 12|
List.insert(0, 'Geeks')
print{"\nList after performing Insert Operation: ")

print(List)

Output

Initial List:

[1, 2, 3, 4]

List after performing Insert Operation:

['Geeks', 1, 2, 3, 12, 4]

Method 3: Using extend() method

Other than append() and insert() methods, there's one

more method for the Addition of elements, extend(),

this method is used to add multiple elements at the

same time at the end of the list.

Note: append() and extend() methods can only

add elements at the end.

Python program to demonstrate
Addition of elements in a List

Creating a List

List = [1, 2, 3, 4]
print{"Initial List: "]
print({List)

Addition of multiple elements
to the List at the end
(using Extend Method)

List.extend([8, 'Geeks', "Always'])

print{"“nList after performing Extend Operation:

print(List)

")

Imitial List:
(1, 2, 3, 4]

List after performing Extend Operation:

[1, 2, 3, 4, 8, "Geeks', 'Always']

Reversing a List

A list can be reversed by using the reverse() method in Python.

Python3

Reversing a list
mylist = [1, 2, 3, 4, 5, 'Geek', 'Python']

mylist.reversel)

printimylist]

Qutput

["Python', "Geek"', 5, 4, 3, 2, 1]

Removing Elements from the List

Method 1: Using remove() method

Elements can be removed from the List by using the

built-in remove() function but an Error arises if the

element doesn't exist in the list. Remove() method only
removes one element at a time, to remove a range of
elements, the iterator is used. The remove() method

removes the specified item.

Note: Remove method in List will only remove the

first occurrence of the searched element.

Python program to demonstrate
Removal of elements in a List

Creating a List
List = [1, 2, 3, 4, 5, 6,

7, 8, 9, 10, 11, 1Z]
print("Initial List: ")
printiList)

Removing elements from List
using Remove() method

List.removel5)
List.removelb)
print("\nList after Hemoval of two elements: "]

print(List
Qutput

Initial List:

(1, 2, 3,4, 5,6, 7,8, 9,10, 11, 12]

List after Removal of two elements:

i, 2, 3, 4, 7, 8, 9, 10, 11, 12]

Creating a List
List = [1, 2, 3, 4, 5, 6,

7, 8, 9, 10, 11, 12]
Removing elements from List
using iterator method

for i in range(l, 5):
List.removel 1)
print{"\nlList after Removing a range of elements: ")

print{List)

Qutput

List after Removing a range of elements:

[, 6, 7, 8, 9, 10, 11, 12]

Method 2: Using pop() method

pop() function can also be used to remove and return

an element from the list, but by default it removes only

the last element of the list, to remove an element from

a specific position of the List, the index of the element

is passed as an argument to the pop() method.

List = [1. 2, 3, 4, 5]

Removing element from the

Set using the popl) method
List.popl()
print(["%nLi=st after popping an element: "]

print(List)

Removing element at a
specific location from the
Set using the popl) method

List.popl(2])
print("“nList after popping a specific element: ")

print[List)

Output

List after popping an element:

[1, 2, 3, 4]

List after popping a specific element:

[1, 2, 4]

Slicing of a List

We can get substrings and sublists using a slice. In Python List, there are multiple ways to print the whale list with

all the elements, but to print a specific range of elements from the list, we use the Slice operation.

Slice operation is performed on Lists with the use of a colon(:).

To print elements from beginning to a range use:

[Index]

To print elements from end-use:

[-Index]

To print elements from a specific Index till the end use

[Index:]

To print the whole list in reverse order, use

[2=-1]

List Comprehension

Python List comprehensions are used for creating new

lists from other iterables like tuples, strings, arrays,
lists, etc. A list comprehension consists of brackets
containing the expression, which is executed for each
element along with the for loop to iterate over each

element.

Syntax:

newList = [expression(element) for element in

oldList if condition |

Python program to demonstrate list
comprehension in Python

= Hi=

below list contains square of all
odd numbers from range 1 to 10

odd_square = [x #** 2 for x in rangell,

print{odd_square)

Output

[1, 9, 25, 49, B1]

11)

if = % Z

List Methods

Function Description
Append() Add an element to the end of the list
Extend() Add all elements of a list to another list
Insert() Insert anitem at the defined index
Remove() Removes an item from the list

Clear() Removes all items from the list

Index() Returns the index of the first matched item

Count() Returns the count of the number of items passed as an argument
Sort() Sort items in a list in ascending order
Reverse() Reverse the order of items in the list

copy() Returns a copy of the list

Function
reduce()

sum()

ord()

cmp()

any()
len()

enumerate()

accumulate()

|

—

map()

arl)

lambday)

Built-in functions with List

Description
apply a particular function passed in its argument to all of the list elements stores the intermediate
result and only returns the final summation value

Sums up the numbers in the list

Returns an integer representing the Unicode code point of the given Unicode character
This function returns 1 if the first list is "greater” than the second list

return maximum element of a given list

return minimum element of a given list

Returns true if all element is true or if the list is empty

return true if any element of the list is true. if the list is empty, return false

Returns length of the list or size of the list

Returns enumerate object of the list

apply a particular function passed in its argument to all of the list elements returns a list containing
the intermediate results

tests if each element of a list is true or not
returns a list of the results after applying the given function to each item of a given iterable

This function can have any number of arguments but only one expression, which is evaluated and
returned.

