Python

e

> @property

Getter and Setter in Pgt,JnT =

7

Python Property Decorator — @property

A decorator feature in Python wraps in a function, appends several

functionalities to existing code and then returns it Methods and functions are
known to be callable as they can be called. Therefore, a decoratoris also a

callable thatreturns callable. This is also known as metaprogramming as at
compile ime a section of program alters another section of the program. Note:
For more information, refer to Decorators in Python

Python @property decorator

@property decorator is a built-in decorator in Python which is helpful in defining
the properties effortlessly without manually calling the inbuilt function
property(). Which is used to return the property attributes of a class from the
stated getter, setter and deleter as parameters. Now, lets see some examples to

illustrate the use of (@property decorator in Python: Example 1:

Python program to illustrate the use

@property decorator

Defining class
class Portal:

Defining __init__ method
def __init__(self):
zelf.__name ="'

Using @property decorator
@property

Getter method
def namel=zelf):
return self.__name

Setter method

@name.setter

def namel=elf, wval):
self.__name = wval

Deleter method

@name.deleter

def namel=elf):
del s=1f.__name

Creating object
p = Portall);

Setting name
p.name = 'GeeksforGeeks'

Prints name
print (p.name]

Deletes name
del p.name

As name is deleted above this
will throw an error
print (p.name)

of

Output:

GeeksTorGeeks

An error 1s thrown
Traceback (most recent call last):
File "main.py", line 42, in
print (p.name)
File "main.py", line 16, in name
return self. name

AttributeError: *Portal’ object has no attribute '_Portal___name’

Here, the @property decorator is used to define the property name in the class
Portal, thathas three methods(getter, setter, and deleter) with similar names i g,
name(), but they have differentnumber of parameters. Where, the method
name(self) labeled with @propertyis a getter method, name(self, val) is a setter
method asitis used to setthe value of the atiribute __name and so its labeled
with @name.setter. Lastly, the method labeled with @name.deleter is a deleter
method which can delete the assigned value by the setter method. However,
deleter is invoked with the help of a keyword del. Example 2:

Python program to illustrate the use of
@property decorator

Creating class
class Celsius:

Defining init metheod with its parameter
def __dinit__(=self, temp = 0):

self._temperature = temp

@property decorator
@property

Getter method
def temp(self):

Prints the assigned temperature value
print{"The wvalue of the temperature is: ")
return se1f._temperature

Setter method
@temp.setter
def temp(self, val):

If temperature is less than -273 than a walue
error is thrown
if val = -273:

raise ValueError("It i8 a wvalue error.")

Prints this if the value of the temperature is set
print{"The value of the temperature is set.")
self._temperature = wval

Creating object for the stated class
cel = Celsius();

Setting the temperature wvalue
cel.temp = =270

Prints the temperature that is set
print(cel.temp)

Betting the temperature value to -300
which is not possible so, an error is
thrown

cel.temp = -300

print(cel.temp)

Qutput;

The wvalue of the temperature is set,
The walue of the temperature is:

-270

An error is thrown
Traceback (most recemt call last):
File "main.py",. line 47, in
cel.temp = -300
File "main.py", line 2B, in temp
raise ValueError("It is a value error.")

ValueError: It is a walue error.

Here, a value error is thrown as the value of the temperature assigned mustbe
above -273. Buthereitis -300. Hence, a value error is thrown.

CO~NO O B WON =

N) —m = 2 3 e 3
oOwooO~NoOoh s wWwN= 0O

)
A

##Getters and Setters in Python
class myclass:
def __init__(self, value):
self._value=value
def show(self):
print(f"Value is {self._value}")
#@property decorator
@property
#getter
def ten_value(self):
return 10 * self._value
#setter
@ten_value.setter
def ten_value(self, new_value):
self._value=new_value/10
obj=myclass(10)
obj.ten_value=72
print(obj.ten_value)
obj.show()

&< TAB

72.0
Value 15 7.2

[Program finished]

