Python




@ Python Decorators

Decorates

Normal
Decorator Function



What is Python Decorator?

Decorator, as can be noticed by the name, i1s like a designer that helps to modify a
function. The decorator can be said to be a modification to the external layer of function,
as It does not change Its structure. A decorator takes a function and inserts some new
functionality in it without changing the function itself. A reference to a function Is
passed to a decorator, and the decorator returns a modified function. The modified
functions usually contain calls to the original function. This 1s also known as
metaprogramming because a part of the program tries to modify and add functionality
to another part of the program at compile time. Understanding the definition could be
difficult, but you can easily grasp the concept through the video section example. In
terms of Python, the other function is also called a wrapper.



Why you should write Decorators?

o Modularity of Decorators
Functionalities can be added or removed
easily in defined blocks of code, which
refrains the repetition of boilerplate setup.

UDecorators are Explicit

It can be applied to all callable based on the
need. This provides readability and hence
valuable for debugging.

JJJJJJ



Where Decorators are used?

@classmethod | @staticmethod
Creates a method without creating an

instance

@mock patch | @mock patch.object
Used for Unit Testing

@login_required

For setting login privileges

@app.route

For Function Registry

[task
To identify function as an
asynchronous task




A wrapper is a function that provides a wrap-around another function. While using

decorator, all the code executed before our function that we passed as a parameter and

the code after it Is executed belongs to the wrapper function. The purpose of the wrapper

function is to assist us. Like if we are dealing with a number of similar statements, the

wrapper can provide us with some code that all the functions have in commaon, and we

can use a decorator to call our function along with the wrapper. A function can be

decorated many times.

Note that a decorator is called before defining a function.

There are two ways to write a Python decorator:

« We can pass our function to the decorator as an argument, thus defining a function
and passing it to our decorator.

« We cansimply use the @ symbol before the function we'd like to decorate.



def i1nneri1(func):
def 1nner2():
print({"Before function execution"};
func()
print{"After function execution™)
return 1nner2

@inner
def function_to_be used():

print("This i1s inside the function")

function_to _be used()

Before function execution
This 15 1nside the function
After function execution




Advantages:

- Decorator function can make our work compact because we can pass all the functions
to a decorator that requires the same sort of code that the wrapper provides.

- We can get our work done without any alteration in the original code of our function.

- We can apply multiple decorators to a single function.

-We can use decorators in authorization in Python frameworks such as Flask and
Django, Logging, and measuring execution time.

We can do a lot with decorators, like Multiple decorators that can be applied to a single
function. | hope this tutorial serves as a good introduction to decorators in Python. After
understanding the basics of Python decorator, learn more advanced use cases of
decorators and how to apply them to classes.



def dec1(funci1):
def nowexec():

print{"Executing now")

func1()

print("Executed")
return nowexec

@dec
def who_1s_harry():
print{“"Harry 1s a good boy™)

who_1s_harry()




<

Executing now

Harry 1s a good boy
Executed

[Program finished]

TAB



