

Python Data Types

Data types are the classification or categorization
of data items. It represents the kind of value that
tells what operations can be performed on a
particular data. Since everything is an object in
Python programming, data types are actually
classes and variables are instance (object) of

these classes.

Following are the standard or built-in data type
of Python:

e Numeric

* Sequence Type

¢ Boolean
e Set

e Dictionary

‘ Python - Data Types ‘

Numeric Dictionary | Boo

:

|

Interger |

Float]

|

Complex |
Number

|

loan | | Set | | “ppe |
[

|

[Strings] [Tuple
| List |

Numeric

In Python, numeric data type represent the data
which has numeric value. Numeric value can be
integer, floating number or even complex

numbers. These values are defined as int, float

and complex class in Python.

e Integers — This value is represented by int
class. It contains positive or negative whole
numbers (without fraction or decimal). In
Python there is no limit to how long an integer
value can be.

» Float — This value is represented by float class.
It is a real number with floating point
representation. It is specified by a decimal
point. Optionally, the character e or E followed
by a positive or negative integer may be
appended to specify scientific notation.

 Complex Numbers — Complex number is
represented by complex class. It is specified as
(real part) + (imaginary part)j. For example —
2+3j

Note — type() function is used to determine the

type of data type.

Python3

Python program to
demonstrate numeric wvalue

a = b5

print("Type of a: ", typela))

b = 5.0

print("\nType of b: ", type(b))
c = 2 + 47

print ("\nType of c: ", typelc))

Output:

Type of a: <class 'int'>

Type of b: <class 'float'>

Type of c: <class 'complex'>

Sequence Type

In Python, sequence is the ordered collection of

similar or different data types. Sequences allows

to store multiple values in an organized and
efficient fashion. There are several sequence
types in Python —

e String

e List
e Tuple

1) String

In Python, Strings are arrays of bytes

representing Unicode characters. A string is a
collection of one or more characters putin a
single quote, double-quote or triple quote. In
python there is no character data type, a
character is a string of length one. It is

represented by str class.

Python Program for
Creation of String

Creating a String
with single Quotes

Stringl = 'Welcome to the Geeks World'
print ("String with the use of Single O

print(Stringl)

Creating a String
with double Quotes

Stringl = "I'm a Geek"

print("\nString with the use of Double
print(Stringl)

print(type(Stringl))

Creating a String
with triple Quotes

Stringl = '"'"'I'm a Geek and I live 1in :
print("\nString with the use of Triple
print (Stringl)

print (type(Stringl))

Creating String with triple
Quotes allows multiple lines

Stringl = "' 'Geeks
For
Life'"'
print ("\nCreating a multiline String:

print (Stringl)

Python Program for
Creation of String

Creating a String
with single Quotes

Stringl = 'Welcome to the Geeks World'
print("String with the use of Single O
print(Stringl)

Creating a String
with double Quotes

Stringl = "I'm a Geek"

print("\nString with the use of Double
print(Stringl)

print(type(Stringl))

Creating a String
with triple Quotes

Stringl = '"'"'I'm a Geek and I live 1in :
print("\nString with the use of Triple
print(Stringl)

print(type(Stringl))

Creating String with triple
Quotes allows multiple lines

Stringl = '' 'Geeks
For
Life' "'
print ("\nCreating a multiline String:

print(Stringl)

Output:

String with the use of Single Quotes:

Welcome to the Geeks World

String with the use of Double Quotes:
I'm a Geek

<class 'str'>

String with the use of Triple Quotes:
I'm a Geek and I live 1n a world of "Geeks"

<class 'str'>

Creating a multiline String:
Geeks
For

Life

Accessing elements of String

In Python, individual characters of a String can be
accessed by using the method of Indexing.
Indexing allows negative address references to
access characters from the back of the String, e.g.
-1refers to the last character, -2 refers to the

second last character and so on.

GEEKSFORGEEKS‘

012 3 4 56 7 8 9 1011 12
1312 -11-10-9 8 -7 6 -5 -4 -3 -2 -1

==

Python3

Python Program to Access
characters of String

Stringl = "GeeksPForGeeks'
print("Initial String: ")

print (Stringl)

Printing First character

print("\nFirst character of String is:

print(Stringl[0])

Printing Last character
print("\nLast character of String is:

print (Stringl([-1])

Output:

Initial String:

GeeksForGeeks

First character of String 1is:

G

Last character of String 1is:

S

2) List

Lists are just like the arrays, declared in other

languages which is a ordered collection of data. It

is very flexible as the items in a list do not need to

be of the same type.

Python program to demonstrate
Creation of List

Creating a List
List = []
print("Initial blank List: ")

print(List)

Creatdng a List with
the use of a String

List = ['GeeksForGeeks']
print("\nList with the use of String:

print(List)

Creating a List with
the use of multiple wvalues

List = ["Geeks", "For", "Geeks"]
print("\nList containing multiple wvaluc
print(List[0])

print(List[2])

Creating a Multi-Dimensional List
(By Nesting a list dinside a List)

List = [['Geeks', 'For'], |['Geeks']]
print("\nMulti-Dimensional List: ")

print (List)

Output:

Initial blank List:

[]

List with the use of String:

['GeeksForGeeks ']

List containing multiple values:
Geeks

Geeks

Multi-Dimensional List:

[['Geeks', 'For'], ['Geeks']]

Accessing elements of List

In order to access the list items refer to the index
number. Use the index operator []to access an
item in a list. In Python, negative sequence
indexes represent positions from the end of the
array. Instead of having to compute the offset as
in List[len(List)-3], itis enough to just write
List[-3]. Negative indexing means beginning
from the end, -1refers to the last item, -2 refers

to the second-last item, etc.

Python program to demonstrate
accessing of element from list

= =

Creating a List with
the use of multiple wvalues

List = ["Geeks", "For", "Geeks"]

accessing a element from the
list using index number

print("Accessing element from the list
print (List[0])
print(List[2])

accessing a element using
negative indexing

print("Accessing element using negative

print the last element of list
print(List[-1])

print the third last element of list

print(List[-3])

Output:

Accessing element from the list

Geeks

Geeks

Accessing element using negative 1ndexing
Geeks

Geeks

3) Tuple

Just like list, tuple is also an ordered collection of

Python objects. The only difference between
tuple and list is that tuples are immutable i.e.
tuples cannot be modified after it is created. It is

represented by tuple class.

Creating Tuple

In Python, tuples are created by placing a

sequence of values separated by ‘comma’ with or
without the use of parentheses for grouping of
the data sequence. Tuples can contain any
number of elements and of any datatype (like

strings, integers, list, etc.).

Note: Tuples can also be created with a single
element, but it is a bit tricky. Having one element
in the parentheses is not sufficient, there must be

a trailing ‘comma’ to make it a tuple.

Python3

Python program to demonstrate
creation of Set

Creating an empty tuple
Tuplel = ()
print("Initial empty Tuple: ")

print (Tuplel)

Creating a Tuple with
the use of Strings

Tuplel = ('Geeks', 'For')
print ("\nTuple with the use of String:

print (Tuplel)

Creating a Tuple with
the use of 1list

list1l = [1, 2, 4, 5, 6]
print("\nTuple using List: ")
print(tuple(listl))

Creating a Tuple with the
use of built-in function

Tuplel = tuple('Geeks')
print ("\nTuple with the use of functio:

print (Tuplel)

Creating a Tuple
with nested tuples

Tuplel = (0, 1, 2, 3)
TupleZz = ('python', 'geek')
Tuple3 = (Tuplel, Tuple?Z)

print ("\nTuple with nested tuples: ")

print (Tuple3)

Output:

Initial empty Tuple:
()

Tuple with the use of String:
('Geeks', 'For')

Tuple using List:
(1, 2, 4, 5, 6)

Tuple with the use of function:

('G', 'e', 'e', k', 's")

Tuple with nested tuples:
(0, 1, 2, 3), ("python’, "geek"))

Note — Creation of Python tuple without the use

of parentheses is known as Tuple Packing.

Accessing elements of Tuple

In order to access the tuple items refer to the
index number. Use the index operator [] to
access an item in a tuple. The index must be an
integer. Nested tuples are accessed using nested

indexing.

Python3

Python program to
demonstrate accessing tuple

tuplel = tuple([1, 2, 3, 4, 5])

Accessing element using indexing
print("First element of tuple")
print(tuplel[0])

Accessing element from last
negative indexing

print("\nLast element of tuple')
print (tuplel[-11])

print("\nThird last element of tuple")
print (tuplel[-31])

Output:

First element of tuple

1

Last element of tuple

5

Third last element of tuple
3

Boolean

Data type with one of the two built-in values, True

Or False. Boolean objects that are equal to True are
truthy (true), and those equal to False are falsy
(false). But non-Boolean objects can be evaluated
in Boolean context as well and determined to be

true or false. It is denoted by the class bool.

Note — True and False with capital ‘T’ and ‘F’ are
valid booleans otherwise python will throw an

error.

Python program to
demonstrate boolean type

print(type(True))

print(type(False))

print(typel(true))

Output:

<class 'bool'>

<class 'bool'>

Traceback (most recent call last):

File "/home/7e8862763fb66153d70824099d4f5fb7.py", line 8, 1n
print(type(true))

NameError: name 'true' 1s not defined

Set

In Python, Set is an unordered collection of data
type that is iterable, mutable and has no duplicate
elements. The order of elements in a set is
undefined though it may consist of various

elements.
Creating Sets

Sets can be created by using the built-in set()
function with an iterable object or a sequence by
placing the sequence inside curly braces,
separated by ‘comma’. Type of elements in a set
need not be the same, various mixed-up data type

values can also be passed to the set.

Python program to demonstrate
Creation of Set in Python

Creating a Set
setl = set()
print("Initial blank Set: ")

print(setl)

Creating a Set with
the use of a String

setl = set("GeeksForGeeks")
print("\nSet with the use of String: ")

print(setl)

Creating a Set with
the use of a List

setl = set(["Geeks", "For", "Geeks"])

print("\nSet with the use of List:

print(setl)

Creating a Set with
a mixed type of wvalues
(Having numbers and strings)

setl = set([1, 2, 'Geeks', 4, 'For',

6,

'Geeks'])

print("\nSet with the use of Mixed Values")

print(setl)

Output:

Initial blank Set:

set()

Set with the use of String:
{IFIl 'DIl rGIF ISIF 1rll 1krl’ IE'}

Set with the use of List:

{'Geeks', 'For'}

Set with the use of Mixed Values

{1, 2, 4, 6, 'Geeks', 'For'}

Accessing elements of Sets

Set items cannot be accessed by referring to an
index, since sets are unordered the items has no
index. But you can loop through the set items
using a for loop, or askif a specified value is

present in a set, by using the in keyword.

Python3

Python program to demonstrate
Accessing of elements in a set

Creating a set
setl = set(["Geeks", "For", "Geeks"])
print("\nInitial set")

print(setl)

Accessing element using
for loop

print ("\nElements of set: ")
for i in setl:

print(i, end =" ")

Checking the element
using in keyword

print("Geeks" 1in setl)

Output:

Initial set:

{'Geeks', 'For'}

Elements of set:

Geeks For

True

Dictionary

Dictionary in Python is an unordered collection of

data values, used to store data values like a map,
which unlike other Data Types that hold only
single value as an element, Dictionary holds
key:value pair. Key-value is provided in the
dictionary to make it more optimized. Each key-
value pair in a Dictionary is separated by a colon

., Whereas each key is separated by a ‘comma’.

Creating Dictionary

In Python, a Dictionary can be created by placing
a sequence of elements within curly {3 braces,
separated by ‘comma’. Values in a dictionary can
be of any datatype and can be duplicated, whereas

keys can’t be repeated and must be immutable.

Dictionary can also be created by the built-in
function dict(). An empty dictionary can be

created by just placing it to curly braces{ }.

Note — Dictionary keys are case sensitive, same
name but different cases of Key will be treated

distinctly.

Creating an empty Dictionary
Dict = {1}
print("Empty Dictionary: ")

print(Dict)

Creating a Dictionary
with Integer Keys

Dict = {1: 'Geeks', 2: 'For', 3: 'Geeks'}
print("\nDictionary with the use of Integer Keys: ")

print(Dict)

Creating a Dictionary
with Mixed keys

Dict = {'Name': 'Geeks', 1: [1, 2, 3, 411}
print("\nDictionary with the use of Mixed Keys: ")

print (Dict)

Creating a Dictionary
with dict() method

Dict = dict({1l: 'Geeks', 2: 'For', 3:'Geeks'l})
print("\nDictionary with the use of dict(): ")

print(Dict)

Creating a Dictionary
with each item as a Pair

Dict = dict([(1, 'Geeks'), (2, 'For')])
print("\nDictionary with each item as a pair: ")

print(Dict)

Output:

Empty Dictionary:
{}

Dictionary with the use of Integer Keys:

{1: 'Geeks', 2: 'For', 3: 'Geeks'}

Dictionary with the use of Mixed Keys:

{1: [1, 2, 3, 4], 'Name': 'Geeks'}

Dictionary with the use of dict():

{1: 'Geeks', 2: 'For', 3: 'Geeks'}

Dictionary with each item as a pair:

{1: 'Geeks', 2: 'For'}

Accessing elements of Dictionary

In order to access the items of a dictionary refer

to its key name. Key can be used inside square
brackets. There is also a method called get() that

will also help in accessing the element from a

dictionary.

Python program to demonstrate
accessing a element from a Dictionary

Creating a Dictionary

Dict = {1: 'Geeks', 'mame': 'For', 3: 'Geeks'}

accessing a element using key
print("Accessing a element using key:")

print(Dict|['name'])

accessing a element using get()
method

print("Accessing a element using get:")

print(Dict.get(3))

Output:

Accessing a element using key:
For
Accessing a element using get:

Geeks

