Python

Python Classes
and Objects

Python Classes and Objects

A class is a user-defined blueprint or prototype from which objects are created.
Classes provide a means of bundling data and functionality together. Creating a
new class creates a new type of object, allowing new instances of that type to
be made. Each class instance can have atiributes attached to it for maintaining
its state. Class instances can also have methods (defined by their class) for
modifying their state.

To understand the need for creating a class and objectin Python let's consider
an example, let's say you wanted to track the number of dogs that may have
different attributes like breed and age. If a listis used, the firstelement could be
the dog's breed while the second element could representits age. Let's suppose
there are 100 different dogs, then how would you know which element is
supposed to be which? What if you wanted to add other properties to these
dogs? This lacks organization and it's the exactneed for classes.

Syntax: Class Definition

class ClassMame:

Statement

Syntax: Object Definition

obj = ClassNMName()

print({ocbj.atrr)

The class creates a user-defined data structure, which holds its own data
members and member functions, which can be accessed and used by creating
an instance of thatclass. Aclassis like a blueprint for an object

Some points on Python class:

« Classes are created by keyword class.

« Atiributes are the variables thatbelong to a class.

« Attributes are always public and can be accessed using the dot () operator
Eg.. My class. Myattribute

Creating a Python Class

Here, the class keyword indicates that you are creating a class followed by the
name of the class (Dogin this case).

Python3

class Dog:
gound = "bark®

Object of Python Class

An Objectis an instance of a Class. A class is like a blueprint while an instance
Is a copy of the class with actual values. Itfs not an idea anymore, it's an actual
dog, like a dog of breed pug who's seven years old. You can have many dogs to
create many differentinstances, but without the class as a guide, you would be
lost, notknowing whatinformation is required.

An objectconsists of;

« State: |tis represented by the atiributes of an object Italso reflects the

properties of an object
« Behavior: Itis represented by the methods ofan object Italso reflects the

response of an object to other objects.
« |dentity: It gives a unique name to an objectand enables one object to interact

with other objects.

ity ' Behavior
Identi State/Attributes ars
Name of dog H!;E“E:'l Sl'::;tr.lr
Y en
I:':']'IL:Ir E:':”

Declaring Claas Objects (Also called instantiating a class)

When an object of a class is created, the class is said to be instantiated. All the
iInstances share the atfributes and the behavior of the class. But the values of
those atfributes, i.e. the state are unique for each object A single class may
have any number of instances.

Example:
Class Dog
StatelAttributes

Dog 1 — Breed IF—— Dog 3
Age
Codar

Behaviors

Eark .

Dog 2 - Shaep Dog 4
Eal

Example of Python Class and object

Creating an objectin Python involves instantiating a class to create a new
instance of that class. This process is also referred to as objectinstantiation.

Python3

Pythoni program to
demonstrate instantisting

3t dE 4k

g class
class Dog:

& simple class
attribute

4t {9k

attrl = "mamm=al"’
attrd = "dog”

A sample method

def funiself):
print{"I'm a", self.attrl}
print{"I'm a" self . attrd}

Driver code
Obdject instantiation
Rodger = Dogl}

Accessing class attributes
and method through objects
print (Rodger.attrl]
Rodger . funi]

Qutput:

mamma 1

I'm a mammal

I'm a dog

In the above example, an object i1s created which i1s basically a dog named
Rodger. This class only has two class atiributes that tellus that Rodger is a dog
anda mammal.

Explanation .

In this example, we are creating a Dog class and we have created two class
variables attr1 and attr2. We have created a method named fun() which returns
the string “I'm a, {attr1}" and I'm a, {attr2}. We have created an object of the Dog
class and we are printing at the attr1 of the object Finally, we are calling the
fun() function.

Self Parameter

When we calla method of this objectas myobject method(arg1, arg2), thisis

automatically converted by Python into MyClass method(myobject, arg1, arg2) —
this is all the special self is about

Python3
class GEG:
def __init__{(self, pame. company):
self.name = name
self.company = company
daef showls=eli]:
print|{"Helloc my name is " 4 self.name+” and I° +
" work in "4self.company+”."|
oby = GFG("John". "GeeksForGeeks")

obj.show()

The Self Parameter does notcallit to be Self, You can use any other name
instead ofit Here we change the self to the word someone and the outputwill
be the same.

Python3
class GFG:
def __init__(somename, name, company]:
SOMENANE . NAMS = [NAME
SOMENATE . COMPANY = COMPANY

def show|somename) :
print{"Hello my name is " + sSomename.name 4
and I work in "4somename.company+”."]

obj = GFG|"John'. "GeeksForGeeks")
obj.show()

QOutput; Output for both of the codes will be the same.

Hello my name is Johm and I work in GeeksForGeeks.

Explanation:

In this example, we are creating a GFG class and we have created the name, and
company instance variables in the constructor We have created a method
named say_hi() which returns the string “"Hello my nameis " + {name} +" and |
work in “H{company}+".". We have created a person class object and we passing
the name John and Company GeeksForGeeks to the instance variable. Finally, we

are calling the show() of the class.

Pass Statement

The program’s execution is unaffected by the pass statements inaction. It

merely permits the program to skip past that section of the code without doing
anything. It is frequently employed when the syntactic consfraints of Python
demand a valid statementbutno useful code mustbe executed.

Python3

class MyClass:
pass

