Python

classmethod() in Python

The classmethod() is an inbuilt function in Python, which returns a class
method for a given function,,

Syntax: classmethod(function)

Parameter ;This function accepts the function name as a parameter.

Return Type:This function returns the converted class method.

Python classmethod()

The classmethod() methods are bound to a class rather than an object Class
methods can be called byboth class and object These methods can be called
with a class or with an object

Class Method vs Static Method

The basic difference between the class method vs Static method in Python and
when to use the class method and static method in Python.

+ A class method takes cls as the first parameter while a static method needs no
specific parameters.

+ A class method can access or modify the class state while a static method
can'taccess or modifyit

* |[n general, static methods know nothing about the class state. They are utility-
type methods thattake some parameters and work upon those parameters.
On the other hand class methods musthave class as a parameter

« We use [@classmethod decorator in Python 1o create a class method and we
use ([Mstaticmethod decorator 1o create a static method in Python.

Example of classmethod in Python
Create a simple classmethod

In this example, we are going 1o see how to create classmethod, for this we
created a class with geeks name with member variable course and created a
function purchase which prints the object. Now we passed the method
geeks.purchase into classmethod which converts the methods to a class
method and then we call the class function purchase without creating a
function object.

Python3
class geeks:
course = 'D3SA
def purchaseiobj]:
print | 'Purchase course : ', obj.course)
geeks.purchase = classmethod(geeks.purchase]

geeks.purchasel()
Output:

Purchase course : DSA

Create class method using classmethod()

Created print_name classmethod before creating this line print_name() It can be
called only with an object not with the class now this method can be called as
classmethod print_name() method is called a class method.

Fython3
class Student:
create a variable
name = "Geeksforgeeks’
create a function
def print_name(obj):
print ("The name is : ", obj.name)

create print_name classmethod

before creating this line print_namel)

It can be called only with object not with class
Student .print_name = classmethodl Student.print_name)

now this method can be called as classmethod
print_name() method is called a class metheod
Student.print_namel)

Output:

The name is : Geeksforgeeks

Factory method using a Class method

Uses of classmethod() function areused in factory design patterns where we
want to callmany functions with the class namerather than an object

Python3

Python program to demonstrate
use of a class method and static method.
from datetime import date

clagss Ferson:

def __init__(self, name, agel:
self.name = name
self.age = afge

a class method to create a
Person object by birth year.
fMclassmeathod

def fromBirthYsar(cls, name, year):
return clsiname, date.todayl).year - year|
def displayiself]):
print|("Name : ", self.name. "Age : ", self.age)
person = Person| 'mayank', 21)

person.displayl |

Output:

Mame : mayank Age - 21

Python @classmethod Decorator

The @classmethod decorator is a builtin fJunction decorator which is an
expression thatgets evaluated after your function is defined. Theresultof that
evaluation shadows your function definition. A class method receives the class
as theimplicitfirstargument justlike an instance method receives the instance.

Syntax of classmethod Decorator

class C(object):
@classmethod

def fun(cls, arg1, arg2, ..):

Where,

« fun; the function thatneeds to be converted into a class method
« returns: a class method for function.

MNote;

+ Aclass methodis a method thatis bound to the class and notthe object of
the class.

+« Theyhave the access to the state of the class as it takes a class parameter
thatpoints 1o the class and not the objectinstance.

« |[tcan modifya class state thatwould apply across all theinstances of the
class. For example, it can modify a class variable thatwould be applicable to
allinstances.

Example

In the below example, we use a staticmethod() and classmethod() to check if a
person is an adultornot

Python3

Python program to demonstrate
use of a class method and static method.
from datetime import date

class Person:
def __init__i(se=lf, name., agel:
self.name = name
self.age = afge

a class method to create a
Person object by birth year.
fclassmethod
def fromBirth¥Year(cls, name, vyear):
return clsiname, date.today().year - year]

a static method to check if a
Person is adult or not.
@etaticmethod
def isAdultiags]:

return age = 18

personl = Personl| 'mayank'., 21)
person? = Person. fromBirth¥Year('mavank', 19%6)

print [personl.age]
print(personzZ.age]

print the result
print[Person. ishdult (22}]

Qutput:

21
25

True

new* 0o Q0

class employee:
company="apple’
def show(self):
print(f"The name is {self.name} and company
is {self.company}")
@classmethod

def changecompany(cls, newcompany):
cls.company=newcompany

eT=employee()
el.name="Ajay’
print(e1.name)
el.show()
el.changecompany("Amazon")
print(employee.company)

& TAB

Ajay
The name is Ajay and company 1s apple
Amazon

[Program finished]

Static methods in Python

In actuality, you define utility methods or group functions

that have some logical relationships In a class using static

methods.

It is very similar to defining a regular function to define static

methods inside of a class.

Static methods n Python, in comparison to nstance

methods, are not bound to an object. In other words, object
state cannot be accessed or changed by static methods.
Additionally, Python does not automatically give the self or
cls parameters to static methods. Therefore, the state of the

class cannot be accessed or changed by static methods.

Example
The @staticmethod decorator is used to define static

methods —

class name_of_class Edit & Run{(}}
def name_of_static_method!parameters_liast
pass
print 'static method defined’

The output of the above code i1s mentioned below -

static method defined

Calling a static method

Without having to create a class instance, a static method
can be called directly from the class. Only static variables

can be accessed by a static method; instance variables are

not accessible.

Syntax

The following syntax is used for calling a static method —

Name of class.static method name()

Example

Following is an example for calling a static method using

Name_of_class.static_method_name() and by using an

object of the class —

class Animal Edit & Run@

def testia

print! 'static method a

calling a static method
Animal. test |12

calling using object
anm = Animal

anm.test!|12

Output

Following is an output of the above code -

static method 12
static method 12

Example
Calling Static method from another method

We will now examine the process of calling a static method
from another static method of the same class. Here, we'll

distinguish between a static method and a class method:

class Animal Edit & Run {{}}
def first_static_method
print! 'first_static_method'
def second_static_method

Animal.firgt_static_method

def class_methodicls
cls.second_static_method
calling the class method

Animal . class_method

Output

Following is an output of the above code —

first static_method

Creating a static method using @staticmethod
Decorator

Add the @staticmethod decorator before the method
definition to make a method static.Python includes a built-in
function decorator called @staticmethod that can be used to
declare a method as static. It i1s an expression that is

assessed following the definition of our function.

Example

Static methods are a particular type of method. There are
times when you'll write code that i1s part of a class but
doesn't use the actual object at all. Itis a utility method and
can function without an object (self parameter). Since It Is
static, we declare 1t that way. Additionally, we can call 1t

from another class method.

As an illustration, let's develop a static method called
“Information()” that takes a "kingdom" and returns a list of
all the requirements that need to be fulfilled for that
kingdom -

Output

Following is an output of the above code —

Information collected lion
Information collected Pantheria

Information collected Animalia

The staticmethod() function

Some programs may define static methods the old-
fashioned way by calling staticmmethod() as a function rather

than a decorator.

If you need to support previous versions of Python (2.2 and

2.3), then you should only define static methods using the
staticmethod() function. The @staticmethod decorator is

advised in all other cases.

Syntax
Following is the syntax of staticmethod() function —

staticmethod(function)

where,

The method you want to change to a static method is called

function.lt returns the static method that was transformed.

Example

Following is an example of staticmmethod() function -

class Animal Edit & HU”@

Animal.test = staticmethod{Animal. test

Animal . test | b

Output

Following is an output of the above code -

static method 5

Note — When you require a reference to a function from a
class body but don't want the automatic conversion to an

iInstance method, the staticmethod() approach can be useful.

