Python

Python

Programming

Access Modifiers

Access Modifiers in Python : Public, Private and Protected

Prerequisites: Underscore (_).in Python, Private Variables in Python

Various object-oriented languaqges like C++, Java, Python control access
modifications which are used to restrict access to the variables and methods of
the class. Mostprogramming languages has three forms of access modifiers,
which are Public, Protected and Private in a class.

Python uses '_' symbol to determine the access control for a specific data
member or a member function of a class. Access specifiers in Python have an
importantrole to play in securing data from unauthorized access and in
preventing it from being exploited.

A Class in Python has three types of access modifiers:

+ Public Access Modifier

+ Protected Access Modifier
« Private Access Modifier

Public Access Modifier:

The members of a class thatare declared public are easily accessible from any
partof the program. All data members and member functions of a class are
public by default

Python3

program to illustrate public access modifier in a class

class Geek:

constructor

daf __init__(=s=1f, name, age]:
public data members

gelf.geekName = name

self.geekAfFe = afse

public member function
def displavAgeiselfl}:
accessing public data member
print("Aga: ", self.geekAfa)
creating object of the class
obj = Geek("RZJI", 20)

mccessing public data membar
print{"Mams: ", obj.geekNamsa)

calling public member function of the class

obi.displayAgel |

Qutput:

Mame: RZJ

fdae: 20

=

In the above program, geekName and geekAge are public data members and
displayAge() method is a public member function of the class Geek. These data
members of the class Geek can be accessed from anywhere in the program.

Protected Access Modifier:

The members of a class that are declared protected are only accessible to a
class derived from it. Data members of a class are declared protected by adding
a single underscore '_" symbol before the data member of that class.

Python3

program to illustrate protected access modifier in a class

super class
clasg Student:

protected data members

—name = HNone
—-roll = Mone
-branch = HNone

£ constructor

def __init__(=elf, name. roll, branch):
self._name = name
gelf._roll = roll
gelf._branch = branch

protected member function
def _displayRollAndBranchi{self):

mpocessing protected data members
print("Roll: ", self._roll}
print("Branch: ", self._branch}

derived class
class Geek(Student):
comnstructor

def __init__{=self. name. rell, branch):
Student . __init__(=2=21f. name. roll, branch)

public member function
def displayDetails{selfl]:

mccessing protected data members of super class
print{"Name: ", =elf._name])

mccessing protected member functions of super class
self. _displayBollAndEBEranchl]

creating obijects of the derived class
obj = Geek("R2ZJ", 1706255, "Information Technology')

calling public member functions of the class
cbj.displayDetails|]

Output:

Mame: R2ZJ
Rzll: 170&256&

Branch: Information Technology

In the above program, _name, _roll, and _branch are protected data members
and _displayRollAndBranch() method is a protected method of the super class
Student. The displayDetails() method is a public member function of the class
Geek which is derived from the Student class, the displayDetails() method in
Geek class accesses the protected data members of the Student class.

Private Access Modifier:

The members of a class that are declared private are accessible within the class
only, private access modifier is the most secure access modifier. Data members
of a class are declared private by adding a double underscore "__" symbol before
the data member of that class.

Python3

program to jillustrate private access modifier in a class
class Geek:

private members

——_name = None

——roll = HMone
——-branch = None

constructor

def __init__(=elf, name. roll. branch):
gelf.__name = name
gelf.__roll = roll
self.__branch = branch

private member function
def __displayDetails{szself]:

accesszing private data members

print{"Name: ', =se<lf.__name)
print{"Roll: ", =self.__roll)
print{"Branch: ", =elf.__branch]

public member function
def accessPrivateFunctioniself):

accesszing private member function
gself. __displeyDetailal)

creating obiject
obj = Geeki"R2J', 1706256, "Information Technology’®)

calling public member function of the class
obj.accessPrivateFunctioni)

Output:

Mame: R2J
Roll: 1706256

Bramch: Information Technology

In the above program, __name, __roll and __branch are private members,
__displayDetails() method is a private member function (these can only be
accessed within the class) and accessPrivateFunction() methodis a public
member function of the class Geek which can be accessed from anywhere
within the program. The accessPrivateFunction() method accesses the private

members of the class Geek.

Below is a program to illustrate the use of all the above three access modifiers
(public, protected, and private) of a class in Python:

Python3

program to illustrate access modifiers of a class
super class
c¢lass Super:

public data member

varl = Mone

protected data member

—warZ = HNone

private data member
——wvar} = HNone

constructor

def __init__(=elf, warl. war2, wari}:
gelf.varl = wvarl
galf._wvarZ2 = warl
galf.__varld = wvarl

public member function
def displayPublicMembers{self]:

maccessing public data members
print("Public Data Member: ', self.wvarl)

protected member function
def _displayProtectedMembers(sslf):

mccessing protected data members
print("Frotected Data Member: ", self._warl)

private member functicon
def __displayPrivateMembers(self]:

accessing private data members
print("FPrivate Data Member: ". =self.__wvarl)]

public member function
def accessFrivateMembers{selfl]:

mccessing private member function
self.__displayPrivateMembersi]

derived class
elass SublSuper):

comstructer
def __init__(self,. warl, warZ, wvari):
Super.__init__f{=elf, warl, warZ, wari)

public member function
daf sccessProtectedMembers(s=1f):

maccessinf protected member functions of super class
zelf._displayProtaectedMembers()

creating ocbijects of the derived class
obi = Subl'Geeks"., 4, "Oe=eks "]

calling public member functions of the class
obij.displayPublicMembers(}

obi.accessProtectedMembers()
obj.accessPrivateMembers(}

Object can access protected member
print{"Object is accessing protected member:”. obj._warz]

object can not access private member, so it will generate Attribute error
#printliobi.__wvar3)

Output:

Public Data Member: Geeks

Protected Data Member: 4

Private Data Member: Geeks !

In the above program, the accessProtectedMembers() method is a public

member function of the class Sub accesses the _displayProtectedMembers()
method which is protected member function of the class Super and the
accessPrivateMembers() method is a public member function of the class
Super which accesses the __displayPrivateMembers() method which is a private
member function of the class Super.

